
Guideline to GitHub

Guideline to GitHub use in the eArchiving Building Block

Date: 31.08.2021
Version: 1.0.0

Guideline to GitHub DILCIS Board

Guideline to GitHub
Guideline to GitHub use in the eArchiving Building Block

The European Commission eArchiving procurement recognizes the E-ARK specifications as the eArchiving
specifications which are funded under the eArchiving Common Services Platform Agreement No. LC-01905904-

CNECT/LUX/2021/OP/0077.

This specification is published, supported, and developed by the Digital Information LifeCycle Interoperability
Standards (DILCIS) Board under the auspices of the DLM Forum.

This specification is maintained by Digital Information LifeCycle Interoperability Standards Board and is licensed
under CC BY 4.0

This specification was previously developed with the support of the European Union:

E-ARK Grant No: 620998 CIP-ICT-PSP.2013.2.5
E-ARK4ALL Agreement No. LC-00921441 CEF-TC-2018-15
E-ARK3 Agreement No. LC-01390244 CEF-TC-2019-3

1.0.0

Guideline to GitHub DILCIS Board
__

2021-08-31 VERSION 1.0.0 III

1 Preface

1.1 Aim of the specification
This document is one of several related specifications which aim to provide a common set of
usage descriptions of international standards for packaging digital information for archiving
purposes. These specifications are based on common, international standards for transmitting,
describing and preserving digital data. They also utilise the Reference Model for an Open
Archival Information System (OAIS), which has Information Packages as its foundation.
Familiarity with the core functional entities of OAIS is a prerequisite for understanding the
specifications.

The specifications are designed to help data creators, software developers, and digital archives
to tackle the challenge of short-, medium- and long-term data management and reuse in a
sustainable, authentic, cost-efficient, manageable and interoperable way. A visualisation of the
current specification network can be seen here:

Figure I: Diagram showing E-ARK specification dependency hierarchy. Note that the image only shows a selection
of the published CITS and isn't an exhaustive list.

Specification Aim and Goals
Common Specification
for Information
Packages

This document introduces the concept of a Common Specification for Information
Packages (CSIP). Its three main purposes are to:

● Establish a common understanding of the requirements, which need to be
met in order to achieve interoperability of Information Packages.

● Establish a common base for the development of more specific Information
Package definitions and tools within the digital preservation community.

CSIP
(Common Specification for

Information Packages)
METS

E-ARK SIP
(Submission Information Package)

METS

E-ARK AIP
(Archival Information Package)

METS

E-ARK DIP
(Dissemination Information Package)

METS

Content Information Type Specification (CITS) – Digital geospatial data records archiving

Common for all
Information
Packages

Content Information Type Specification (CITS) – Electronic Records Management Systems

Content Information Type Specification (CITS) – ...

Content Information Type Specification (CITS) – Relational Databases

https://github.com/DILCISBoard/spec-publisher/blob/master/res/md/figs/fig_1_dip.svg

Guideline to GitHub DILCIS Board
__

2021-08-31 VERSION 1.0.0 IV

Specification Aim and Goals
● Propose the details of an XML-based implementation of the requirements

using, to the largest possible extent, standards which are widely used in
international digital preservation.

Ultimately, the goal of the Common Specification is to reach a level of
interoperability between all Information Packages so that tools implementing the
Common Specification can be adopted by institutions without the need for further
modifications or adaptations.

E-ARK SIP The main aims of this specification are to:

● Define a general structure for a Submission Information Package format
suitable for a wide variety of archival scenarios, e.g. document and image
collections, databases or geographical data.

● Enhance interoperability between Producers and Archives.
● Recommend best practices regarding metadata, content and structure of

Submission Information Packages.
E-ARK AIP The main aims of this specification are to:

● Define a generic structure of the AIP format suitable for a wide variety of
data types, such as document and image collections, archival records,
databases or geographical data.

● Recommend a set of metadata related to the structural and the
preservation aspects of the AIP as implemented by the eArchiving
Reference Implementation (earkweb).

● Ensure the format is suitable to store large quantities of data.
E-ARK DIP The main aims of this specification are to:

● Define a generic structure of the DIP format suitable for a wide variety of
archival records, such as document and image collections, databases or
geographical data.

● Recommend a set of metadata related to the structural and access aspects
of the DIP.

Content Information
Type Specifications

The main aim and goal of a Content Information Type Specification is to:

● Define, in technical terms, how data and metadata must be formatted and
placed within a CSIP Information Package in order to achieve
interoperability in exchanging specific Content Information.

The number of possible Content Information Type Specifications is unlimited. For a
list of existing Content Information Type Specifications see the DILCIS Board
webpage (DILCIS Board, http://dilcis.eu/).

1.2 Organisational support
This specification is maintained by the Digital Information LifeCycle Interoperability Standards
Board (DILCIS Board, http://dilcis.eu/). The role of the DILCIS Board is to enhance and maintain
the draft specifications developed in the European Archival Records and Knowledge
Preservation Project (E-ARK project, http://eark-project.com/), which concluded in January
2017. The Board consists of eight members, but no restriction is placed on the number of
participants taking part in the work. All Board documents and specifications are stored in GitHub
(https://github.com/DILCISBoard/), while published versions are made available on the Board

http://dilcis.eu/
http://dilcis.eu/
http://eark-project.com/
https://github.com/DILCISBoard/

Guideline to GitHub DILCIS Board
__

2021-08-31 VERSION 1.0.0 V

webpage. The DILCIS Board have been responsible for providing the core specifications to the
Connecting Europe Facility eArchiving Building Block
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving/.

1.3 Authors & Revision History
A full list of contributors to this specification, as well as the revision history, can be found in the
Postface material.

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eArchiving/
https://github.com/DILCISBoard/spec-publisher/blob/master/res/md/common-intro.md#postface

2021-08-31 VERSION 1.0.0 6

TABLE OF CONTENT
1 Preface .. 3

1.1 Aim of the specification .. 3

1.2 Organisational support ... 4

1.3 Authors & Revision History ... 5

1 Context ... 7
1.1 Purpose ... 7

1.2 Scope ... 7

2 Getting started .. 7
3 GitHub tools and references... 7
4 Git/GitHub concepts .. 7

4.1 Commits .. 7

4.2 Tags ... 8

4.3 Branches and versioning ... 9

4.4 Pull Requests (PR) ... 9

5 The GitHub workflow ... 10
6 Contributing to the specification process .. 11

6.1 Writing on GitHub ... 11

7 Providing feedback .. 11
7.1 Providing feedback using GitHub issues ... 12

7.2 Providing a Contribution as a Pull Request ... 12

7.2.1 Pull Request Style ... 13

7.2.2 Cloning a Repository .. 13

7.2.3 Creating a new Branch ... 13

8 Postface .. 15

 LIST OF FIGURES

Figure 1: A commit to the CSIP repository ...8
Figure 2: The bookmark for CSIP release v2.0 ...9
Figure 3: A PR awaiting review .. 10
Figure 4: The GitHub workflow ... 11
Figure 5: The GitHub menus for the CSIP repository .. 12
Figure 6: The CSIP repository issue page .. 12
Figure 7: Buttons in GitHub ... 13
Figure 8: Naming a branch in GitHub .. 14

2021-08-31 VERSION 1.0.0 7

1 Context

1.1 Purpose

The purpose of this guideline is to explain further and describe the use of GitHub with the
specifications within the DILCIS Board and the eArchiving Building Block.

1.2 Scope

This Guideline will describe the main concepts and ways of interacting with the specifications through
the use of GitHub. The guideline is not a beginner’s tutorial in using GitHub. A starting point for those
new to GitHub is this tutorial, https://guides.github.com/activities/hello-world/

2 Getting started
A primer on Git concepts and the workflow used with the specifications is given below. If you are
comfortable with Git and GitHub you can move directly to the section about contributing. This
document provides an introduction for those unfamiliar with Git and GitHub’s support for branching
and versioning. It uses the development done by the DILCIS Board of the Common Specification for
Information Packages for illustration purposes.

3 GitHub tools and references
This is intended as a guide to the use of GitHub with the specifications. In addition, there are many
useful online resources (e.g. https://guides.github.com/).

4 Git/GitHub concepts
There are four Git concepts that need to be understood. These are: commits, tags,
branches/branching, and pull requests.

4.1 Commits

Commits are checked in units of work on a file. This is a simple model where an author makes changes
to a file or files in the repository and then checks them into the repository. This check-in is a commit,
and it records:

• the email and id of the author who made the change with the time and date of the check-in;

• a comment by the commit author describing the changes;

• a record of the changes made;

• a unique SHA1 identifier for the check-in itself.

Here is an illustration of a small commit to the CSIP repository, it simply changes the version number
and publication date:

https://guides.github.com/activities/hello-world/
https://guides.github.com/

2021-08-31 VERSION 1.0.0 8

Figure 1: A commit to the CSIP repository

The original can be found at https://github.com/DILCISBoard/E-ARK-
CSIP/commit/afaededeabb82d1b6afb0e10154e6ac9c3518a60 the long last part of the URL is the SHA1
id of the commit itself. Work is built up as a chain of commits. Ideally, an individual commit should be
small as it makes tracking changes and rolling back work easier. The name commit is derived from the
act of committing a change to the permanent record by checking the work into a repository.

4.2 Tags

A tag (https://git-scm.com/book/en/v2/Git-Basics-Tagging) is effectively a bookmark to an individual
commit and is used to record a significant state in the project repository. Released versions are given a
tag, and typical tag names tend to reflect this (e.g. v2.0 for the CSIP). There are two types of tags:

• Lightweight tags are used by authors to bookmark particular states of work.

• Official release tags tend to be annotated tags that store more information (e.g. author,
comment, dates etc., to inform users that the state is an approved version).

The v2.0 draft of the CSIP is shown in the figure below.

https://github.com/DILCISBoard/E-ARK-CSIP/commit/afaededeabb82d1b6afb0e10154e6ac9c3518a60
https://github.com/DILCISBoard/E-ARK-CSIP/commit/afaededeabb82d1b6afb0e10154e6ac9c3518a60
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://git-scm.com/book/en/v2/Git-Basics-Tagging

2021-08-31 VERSION 1.0.0 9

Figure 2: The bookmark for CSIP release v2.0

4.3 Branches and versioning

Git branches (https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is) are a way of
organising different strands of work within a repository. It is the use of branches that allow multiple
authors to work on a single document simultaneously. In effect, branches are nothing more than
mobile tags that record a particular state of work. To illustrate this, consider the current work on the
CSIP, which might be organised into the following branches:

• Master is the latest officially released version of the specification. This is the designated main
branch for the repository, making it the default branch viewed on GitHub. The information in
this branch is authoritative because it has been reviewed and approved by the DILCIS Board. If
you are looking for a version of the specification to use in your organisation or are unsure as to
which branch to use, it is advisable to start here.

• Integration holds the work that has been done on the upcoming version of the specification.
While the work here has been reviewed by the DILCIS Board, it may be subject to change as the
new specification version evolves. If you are interested in reviewing or contributing to future
versions of the specification, you should start here.

Each repository also contains specific release branches named rel/<version-no>. These are used to:

• allow the Board and users to view previous versions of the specification easily; and

• make editorial changes to a specific version, usually correcting spelling issues or fixing typos.

4.4 Pull Requests (PR)

Pull requests (https://help.github.com/en/articles/about-pull-requests) are GitHub’s mechanism for
sharing and organising work done in other branches. Once a pull request is open, its contents can be
reviewed by other project members; in this case, the DILCIS Board and follow-on commits can be
added if necessary. A pull request can be initiated by comparing any two branches for changes. Once a
pull request is made it usually, depending on the repository policy, requires a review before merging.
In this case the responsible body for the review and the merge is the DILCIS Board. The figure below
shows a PR made against the CSIP repository that awaits review.

https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/about-pull-requests

2021-08-31 VERSION 1.0.0 10

Figure 3: A PR awaiting review

GitHub provides a pull request view for each project. Here are the open pull requests for the Common
Specification project: https://github.com/DILCISBoard/E-ARK-CSIP/pulls. This view shows pull requests
that have been closed: https://github.com/DILCISBoard/E-ARK-CSIP/pulls?q=is%3Apr+is%3Aclosed.

Before a pull request is merged into the repository the DILCIS Board will review it and give feedback to
the submitter.

5 The GitHub workflow
The different repositories in Git and GitHub management follow this branching principle.

• master which is the current released state of a repository project;

• rel/v2.0 where ongoing corrections to the v2.0 draft are made before publication via master;

• feat/segmented_ips (or other name depending on what the feature is handling) where
development of the feature documentation can continue for release in a future version; and

• integration is the current working copy of the repository project to ensure that different
strands of work can be merged before publication.

https://github.com/DILCISBoard/E-ARK-CSIP/pulls
https://github.com/DILCISBoard/E-ARK-CSIP/pulls?q=is%3Apr+is%3Aclosed

2021-08-31 VERSION 1.0.0 11

Figure 4: The GitHub workflow

In Figure 4, it can be seen that integration (in purple) and master (in green) are the two consistent
branches. Master always shows the latest official release and is updated from release branches, not
from integration. Following the orange boxes for work on draft releases, it can be seen that the draft
release rel/v2.0-draft is created from the integration branch. The official draft release is also pushed
to master. Revisions to the draft are made in the fix/v2-draft, and merged with the rel/v2.0-
draft branch to create the corrected rel/v2.0 branch. In reality, this work would take place in several
branches as separate strands of work. The diagram excludes these for clarity.

Once version 2.0 is ready in rel/v2.0, it can be merged to master and to integration because the
content also needs to be in the working version. At the same time, work can continue in the
red feat/segmented_ips branch. The author must also merge the latest work from integration here so
that other work (e.g. typos fixed in v2.0 are retained). Once work has finished on the segmented IP
branch, it can be merged to master for publication in a future specification version (e.g. v2.1).

6 Contributing to the specification process
We use GitHub (https://github.com/) to organise, assign and review the work with the specifications.
This means that to participate, you will need to sign up to GitHub and get a GitHub id
(https://github.com/join).

6.1 Writing on GitHub

Most of your interaction with GitHub itself will be through its online forms for submitting issues, which
are generally simple. Most forms provide a free text box for comments and/or a description. While
plain text is fine, it lacks even rudimentary formatting. Most places where you can enter free text on
GitHub support Markdown (https://daringfireball.net/projects/markdown/), specifically GitHub
flavoured Markdown (https://guides.github.com/features/mastering-markdown/).

7 Providing feedback
Feedback can be provided using GitHub issues or as a Pull Request.

https://github.com/
https://github.com/
https://github.com/join
https://github.com/join
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/

2021-08-31 VERSION 1.0.0 12

7.1 Providing feedback using GitHub issues

The simplest way of contributing is to provide feedback on our work using GitHub Issues
(https://guides.github.com/features/issues/). Each project has its own issue tracker, which can be
found using the Issues tab on the GitHub project page or appending/issues to the projects GitHub URL.

Figure 5: The GitHub menus for the CSIP repository

As an example, the GitHub issues page for CSIP is available here: https://github.com/DILCISBoard/E-
ARK-CSIP/issues.

Figure 6: The CSIP repository issue page

The GitHub instructions for creating an issue can be found here
(https://help.github.com/en/articles/creating-an-issue).

7.2 Providing a Contribution as a Pull Request

The branch arrangement allows changes to be made to a specific version of a project. A member of
the DILCIS Board will then review these before publication. Changes are submitted as GitHub pull
requests (https://help.github.com/en/articles/about-pull-requests). A pull request is simply a set of
edits made to code. Each pull request is made against a specific branch. It can be tricky working out
which branch to use when submitting a pull request. Here are a few guidelines:

• pull requests should rarely, if ever, be made against the master branch. This is the officially
released branch and does not contain the latest changes;

• pull requests should usually be created using the branch that represents the version you wish
to amend; for instance, changes to version 2.0 of the APP should be made against
the rel/2.0 branch; and

• if you submit a pull request against the wrong branch, do not worry, there is no harm done,
and a member of the review team will get in touch and help.

https://guides.github.com/features/issues/
https://guides.github.com/features/issues/
https://github.com/DILCISBoard/E-ARK-CSIP/issues
https://github.com/DILCISBoard/E-ARK-CSIP/issues
https://help.github.com/en/articles/creating-an-issue
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/about-pull-requests

2021-08-31 VERSION 1.0.0 13

7.2.1 Pull Request Style

When providing contributions as pull requests, remember that small is beautiful. If you are planning to
provide a number of changes, please break them down into multiple pull requests rather than bundle
them into a single contribution. This is because:

• small pull requests are easier to review;

• review responsibilities can be split across multiple contributions; and

• if there is a review issue with a single part of a large pull request, then none of the work
contributed can be merged.

Be sure to provide a detailed description of the changes you are submitting using the pull request
form. This makes it easier for reviewers to evaluate your contribution.

7.2.2 Cloning a Repository

In order to create a pull request, it is usually best to create your own copy of the repository on GitHub
(https://help.github.com/en/articles/cloning-a-repository), known as a fork or a clone. You will need a
GitHub account to fork a repository. If you have one, you need to press the fork button shown in the
top right of the repository’s home screen:

Figure 7: Buttons in GitHub

You can then make the changes you want, either on a working copy of the repository on your own
machine, or using GitHub’s web editor (https://help.github.com/en/articles/editing-files-in-your-
repository). Once your changes are ready, you can submit them as a pull request
(https://help.github.com/en/articles/creating-a-pull-request), be sure to select the appropriate
branch. Again if you make a mistake, someone will get in touch to help.

7.2.3 Creating a new Branch

To create a new branch on GitHub follow these steps:

1. From the repo home page, ensure that the branch you wish to copy, in this case, the master is
selected.

2. Hit the pull-down button and type the new branch name. In the image below, we are creating
the rel/2.0-draft branch.

https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/editing-files-in-your-repository
https://help.github.com/en/articles/editing-files-in-your-repository
https://help.github.com/en/articles/editing-files-in-your-repository
https://help.github.com/en/articles/creating-a-pull-request
https://help.github.com/en/articles/creating-a-pull-request

2021-08-31 VERSION 1.0.0 14

3. Click the “Create branch: rel/2.0-draft” panel. The name will be that of the branch you are
creating. Check the “from ‘master’” tag to ensure you are cloning the branch you intend, in this
case master.

Figure 8: Naming a branch in GitHub

4. Do your work in this new branch!

5. When you are finished, create the pull request to submit your work to the DILCIS Board for
review and merging.

2021-08-31 VERSION 1.0.0 15

8 Postface

AUTHOR(S)

Name(s) Organisation(s)

Carl Wilson OPF

Karin Bredenberg Kommunalförbundet Sydarkivera

REVIEWER(S)

Name(s) Organisation(s)

Jaime Kaminski Highbury R&D Ltd

[Name] [Affiliation]

[Name] [Affiliation]

Project co-funded by the European Commission
within the ICT Policy Support Programme

Dissemination Level

P Public x

C Confidential, only for members of the Consortium and the
Commission Services

2021-08-31 VERSION 1.0.0 16

REVISION HISTORY AND STATEMENT OF ORIGINALITY

Submitted Revisions History

Revision
No.

Date Authors(s) Organisation Description

1.0.0 2021-08-31 Karin
Bredenberg

Sydarkivera Guideline published

Statement of originality:
This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,
quotation or both.

	guidelines-github
	Guideline_using_GitHub_in_eArchivingBB_v1_0_0_text
	1 Preface
	1.1 Aim of the specification
	1.2 Organisational support
	1.3 Authors & Revision History

	1 Context
	1.1 Purpose
	1.2 Scope

	2 Getting started
	3 GitHub tools and references
	4 Git/GitHub concepts
	4.1 Commits
	4.2 Tags
	4.3 Branches and versioning
	4.4 Pull Requests (PR)

	5 The GitHub workflow
	6 Contributing to the specification process
	6.1 Writing on GitHub

	7 Providing feedback
	7.1 Providing feedback using GitHub issues
	7.2 Providing a Contribution as a Pull Request
	7.2.1 Pull Request Style
	7.2.2 Cloning a Repository
	7.2.3 Creating a new Branch

	8 Postface

